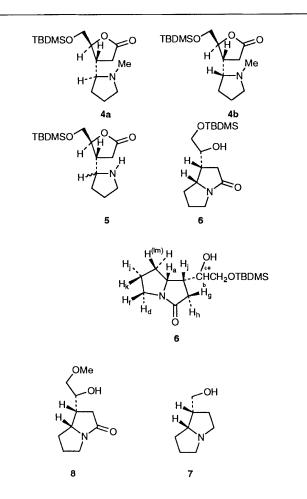

Photocatalysed Addition of Pyrrolidines to Butenolides: a Concise Synthesis of the Pyrrolizidine Alkaloid Ring System

Elson Santiago de Alvarenga and John Mann

Chemistry Department, Reading University, Whiteknights, Reading RG6 2AD, UK


The regiospecific and stereoselective photocatalysed addition of N-substituted pyrrolidines to 5(S)-substituted furan-2-(5H)-ones (butenolides), and subsequent conversion of the adduct from N-(trimethylsilyl)pyrrolidine into the 1-azabicyclo[3.3.0]octane ring system of the pyrrolizidine alkaloids are described.

We recently described 1,2 the regiospecific and (apparently) stereospecific addition of various alcohols to butenolides 1 under irradiation in the presence of benzophenone (Scheme 1).

The photoadducts 2 and 3 were then used for the construction of *cis*-chrysanthemic acids and novel nucleosides, respectively. In an attempt to widen the scope of this process, we have now examined the photocatalysed addition of *N*-substituted pyrrolidines to butenolides.

Irradiation (Pyrex, water-cooled immersion well, degassing with nitrogen, 350 nm) of 5-O-TBDMS-butenolide 1a (ref. 3) with N-methylpyrrolidine in acetonitrile in the presence of benzophenone (1 mol equiv.) yielded the two photoadducts 4a and 4b in isolated yields of 40 and 20%, respectively. A small amount of benzopinacol was also obtained, but over 70% of benzophenone was recovered. The reaction was complete within 4 h and has been carried out routinely on the 5 g scale. Attempts to remove the N-methyl group using 1-chloroethyl chloroformate⁴ (even in the presence of an acid scavenger) led to loss of the tert-butyldimethylsilyl (TBDMS) group and complex product mixtures. In consequence, the photoreaction was repeated with N-(trimethylsilyl)pyrrolidine (Aldrich Chemical Company) in place of N-methylpyrrolidine. After irradiation for 1-2 h, the butenolide had been consumed, and treatment of the crude reaction mixture with potassium tertbutoxide in tetrahydrofuran (THF) effected the conversion of the presumed photoadduct 5 into the 4-substituted 1-azabicyclo[3.3.0]octan-2-one 6 which has the ring skeleton and stereochemistry of the pyrrolizidine alkaloid lindelofidine 7 (in particular 2D-COSY and NOE experiments showed that H_a

and H_i had the relative stereochemistry depicted). The overall yield of this compound from butenolide **1a** was around 15–20%. Use of the alternative butenolide **1c** allowed recovery of unchanged benzophenone through extraction of the crude adducts into aqueous HCl, with subsequent neutralisation and extraction into dichloromethane prior to treatment with potassium *tert*-butoxide. However, the overall yield of the corresponding azabicyclo compound **8** was still around 15–20%.

These transformations are reproducible, though the reactions remain to be optimised, and the rapid conversion achieved with the TMS-pyrrolidine suggests that a judicious change of solvent and photosensitiser may enhance even further what is almost certainly an electron transfer process.⁵ The other stereoisomer of butenolide 1 is readily available, thus extending the stereochemical possibilities of these reactions.

Experimental

3-(N-Methylpyrrolidin-2'-yl)-4-(tert-butyldimethylsiloxymethyl)butan-4-olide 4a.—A solution of (S)-5-(tert-butyldimethylsilyloxy)methylfuran-2(5H)-one 1a (3.66 g, 0.016 mol), benzophenone (2.91 g, 0.016 mol) and N-methylpyrrolidine (4 cm^3) in acetonitrile (70 cm³) was degassed with nitrogen for 1 h. The solution was then irradiated under a medium pressure mercury lamp (350 nm, 120 W) for 4 h in a Pyrex water-cooled immersion well. Removal of the solvent under reduced pressure followed by purification by flash chromatography (ethyl acetate) yielded a yellow oil (2.00 g, 40%); Rf 0.52 [diethyl ethermethanol (9:1, v/v)]; v_{max} (thin film)/cm⁻¹ 2953, 2856 (Si-CH₃), 2781 (NCH₂) and 1777 (C=O) (Found: M⁺, 313.2078. $C_{16}H_{31}NO_{3}Si$ requires *M*, 313.2074); $\delta_{H}(400 \text{ MHz}; \text{ CDCl}_{3};$ J/Hz) 0.04 and 0.05 (2 × s, 6 H, SiMe₂), 0.87 [s, 9 H, C(CH₃)₃], 1.46-1.53 (m, 1 H, 3'-H_a), 1.65-1.73 (m, 2 H, 4'-H), 1.77-1.86 (m, 1 H, 3'-H_b), 2.13–2.21 (m, 2 H, 5'-H_a, 2-H_b), 2.23–2.27 (m, 4 H, NMe, 2'-H), 2.70–2.78 (m, 2 H, 2-H_a, 3-H), 3.00–3.04 (m, 1 H, 5'-H_b), 3.57-3.60 (dd, 1 H, J_{gem} 11.3, $J_{4,5b}$ 2.4, 5-H_b), 3.87-3.91 (dd, 1 H, J_{4.5a} 2.5, 5-H_a) and 4.48-4.50 (m, 1 H, 4-H); $\delta_{\rm C}(100 \text{ MHz}; \text{ CDCl}_3) - 5.8 \text{ (SiMe)}, -5.7 \text{ (SiMe)}, 18.1$ [C(CH₃)₃], 22.2 (C-4'), 25.7 [C(CH₃)₃], 25.8 (C-3'), 32.7 (C-2), 36.2 (C-3), 40.4 (NMe), 57.2 (C-5'), 65.2 (C-5), 67.7 (C-2'), 81.0 (C-4) and 177.2 (C=O).

(4R,5R)-4(2'-tert-butyldimethylsiloxy-1'-hydroxyethyl)-1-azabicyclo[3.3.0]octan-2-one 6.—A solution of (S)-5-(tert-butyldimethylsiloxymethylfuran-2(5H)-one **1a** (2.0 g, 8.77 × 10⁻³ mol), benzophenone (1.60 g, 8.79 × 10⁻³ mol) and TMSpyrrolidine (2.51 g, 3.06 cm³, 17.5 × 10⁻³ mol) in dried acetonitrile (70 cm³) was degassed for 1 h. The mixture was irradiated for 2 h (354 nm, 125 W) and all butenolide was consumed. The acetonitrile was evaporated and the crude oil was taken up in dried THF (200 cm³) and potassium *tert*butoxide (0.98 g, 8.77 × 10⁻³ mol) in THF (50 cm³) was added. The mixture became dark blue when the first drops of base were added going to dark red at the end of the reaction. The cyclo adduct 6 was purified by flash column chromatography (light petroleum–ethyl acetate 1:1, v/v and neat ethyl acetate) (0.39 g, 15%); $R_f 0.26$ (ethyl acetate); v(solution in CH₂Cl₂)/cm⁻¹ 2957, 2932, 2859 (Si-CH) and 1681 (NC=O) (Found: MH⁺, 300.1995. $C_{15}H_{29}NO_{3}Si requires, MH^{+}, 300.1996); \delta_{H}(400 MHz; CDCl_{3};$ J/Hz 0.06 (s, 6 H, 2 × Me), 0.88 (s, 9 H, Bu^t), 1.68–1.74 (m, 2 H, H_1, H_m , 1.87–2.00 (m, 1 H, H_i), 2.08–2.17 (m, 1 H, H_k), 2.42–2.54 (m, 3 H, H_g, H_i, OH), 2.62–2.69 (dd, 1 H, J_{hi} 9.1, J_{hg} 16.8, H_h), $3.00-3.07 \text{ (m, 1 H, H_d)}, 3.40-3.45 \text{ (dd, 1 H, } J_{be} \text{ 7.8, } J_{ce} \text{ 9.8, H_e)},$ $3.51-3.56 \text{ (m, 1 H, H_f)}, 3.56-3.60 \text{ (dd, 1 H, } J_{bc} 3.8, J_{ce} 9.8, H_c),$ $3.75-3.80 \text{ (m, 1 H, H}_{b} \text{ and } 3.84-3.90 \text{ (m, 1 H, H}_{a}; \delta_{C}(100 \text{ MHz};$ $CDCl_3$) -5.6 (2 × Me), 18.1 [C(CH₃)₃], 25.5 (CH₂), 25.7 [C(CH₃)₃], 2.62 (CH₂), 34.5 (CH), 35.2 (O=CCH₂), 41.2 (NCH₂), 64.0 (OCH₂), 65.7 (NCH), 71.0 (OCH) and 175.8 (C=0).

Acknowledgements

We thank the CNPq (Brazil) for a scholarship for E. S. Alvarenga and Professor Andrew Gilbert for helpful discussions.

References

- 1 J. Mann and A. Weymouth-Wilson, Carbohydr. Res., 1991, 216, 511.
- 2 J. Mann and A. Weymouth-Wilson, Synlett, 1992, 67.
- 3 J. Mann, N. K. Partlett and A. Thomas, J. Chem. Res. (S), 1987, 369.
- 4 J. H. Cooley and E. J. Evain, Synthesis, 1989, 1.
- 5 Y. T. Jeon, C. P. Lee and Patrick S. Mariano, J. Am. Chem. Soc., 1991, 113, 8847.

Paper 3/04401G Received 26th July 1993 Accepted 6th August 1993